Abstract:We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
Abstract:Adapting Large Language Models (LLMs) to novel tasks and enhancing their overall capabilities often requires large, high-quality training datasets. Synthetic data, generated at scale, serves a valuable alternative when real-world data is scarce or difficult to obtain. However, ensuring the quality of synthetic datasets is challenging, as developers must manually inspect and refine numerous samples to identify errors and areas for improvement. This process is time-consuming and requires specialized tools. We introduce NeMo-Inspector, an open-source tool designed to simplify the analysis of synthetic datasets with integrated inference capabilities. We demonstrate its effectiveness through two real-world cases. Analysis and cleaning of the synthetically generated GSM-Plus dataset with NeMo-Inspector led to a significant decrease in low-quality samples from 46.99% to 19.51%. The tool also helped identify and correct generation errors in OpenMath models, improving accuracy by 1.92% on the MATH dataset and by 4.17% on the GSM8K dataset for a Meta-Llama-3-8B model fine-tuned on synthetic data generated from Nemotron-4-340B.
Abstract:As inference-time scaling becomes critical for enhanced reasoning capabilities, it is increasingly becoming important to build models that are efficient to infer. We introduce Nemotron-H, a family of 8B and 56B/47B hybrid Mamba-Transformer models designed to reduce inference cost for a given accuracy level. To achieve this goal, we replace the majority of self-attention layers in the common Transformer model architecture with Mamba layers that perform constant computation and require constant memory per generated token. We show that Nemotron-H models offer either better or on-par accuracy compared to other similarly-sized state-of-the-art open-sourced Transformer models (e.g., Qwen-2.5-7B/72B and Llama-3.1-8B/70B), while being up to 3$\times$ faster at inference. To further increase inference speed and reduce the memory required at inference time, we created Nemotron-H-47B-Base from the 56B model using a new compression via pruning and distillation technique called MiniPuzzle. Nemotron-H-47B-Base achieves similar accuracy to the 56B model, but is 20% faster to infer. In addition, we introduce an FP8-based training recipe and show that it can achieve on par results with BF16-based training. This recipe is used to train the 56B model. All Nemotron-H models will be released, with support in Hugging Face, NeMo, and Megatron-LM.
Abstract:Traditional automatic speech recognition (ASR) models output lower-cased words without punctuation marks, which reduces readability and necessitates a subsequent text processing model to convert ASR transcripts into a proper format. Simultaneously, the development of end-to-end ASR models capable of predicting punctuation and capitalization presents several challenges, primarily due to limited data availability and shortcomings in the existing evaluation methods, such as inadequate assessment of punctuation prediction. In this paper, we introduce a LibriSpeech-PC benchmark designed to assess the punctuation and capitalization prediction capabilities of end-to-end ASR models. The benchmark includes a LibriSpeech-PC dataset with restored punctuation and capitalization, a novel evaluation metric called Punctuation Error Rate (PER) that focuses on punctuation marks, and initial baseline models. All code, data, and models are publicly available.
Abstract:Extending the context window of large language models (LLMs) is getting popular recently, while the solution of augmenting LLMs with retrieval has existed for years. The natural questions are: i) Retrieval-augmentation versus long context window, which one is better for downstream tasks? ii) Can both methods be combined to get the best of both worlds? In this work, we answer these questions by studying both solutions using two state-of-the-art pretrained LLMs, i.e., a proprietary 43B GPT and LLaMA2-70B. Perhaps surprisingly, we find that LLM with 4K context window using simple retrieval-augmentation at generation can achieve comparable performance to finetuned LLM with 16K context window via positional interpolation on long context tasks, while taking much less computation. More importantly, we demonstrate that retrieval can significantly improve the performance of LLMs regardless of their extended context window sizes. Our best model, retrieval-augmented LLaMA2-70B with 32K context window, outperforms GPT-3.5-turbo-16k and Davinci003 in terms of average score on seven long context tasks including question answering and query-based summarization. It also outperforms its non-retrieval LLaMA2-70B-32k baseline by a margin, while being much faster at generation. Our study provides general insights on the choice of retrieval-augmentation versus long context extension of LLM for practitioners.
Abstract:Text normalization - the conversion of text from written to spoken form - is traditionally assumed to be an ill-formed task for language models. In this work, we argue otherwise. We empirically show the capacity of Large-Language Models (LLM) for text normalization in few-shot scenarios. Combining self-consistency reasoning with linguistic-informed prompt engineering, we find LLM based text normalization to achieve error rates around 40\% lower than top normalization systems. Further, upon error analysis, we note key limitations in the conventional design of text normalization tasks. We create a new taxonomy of text normalization errors and apply it to results from GPT-3.5-Turbo and GPT-4.0. Through this new framework, we can identify strengths and weaknesses of GPT-based TN, opening opportunities for future work.
Abstract:Contextual spelling correction models are an alternative to shallow fusion to improve automatic speech recognition (ASR) quality given user vocabulary. To deal with large user vocabularies, most of these models include candidate retrieval mechanisms, usually based on minimum edit distance between fragments of ASR hypothesis and user phrases. However, the edit-distance approach is slow, non-trainable, and may have low recall as it relies only on common letters. We propose: 1) a novel algorithm for candidate retrieval, based on misspelled n-gram mappings, which gives up to 90% recall with just the top 10 candidates on Spoken Wikipedia; 2) a non-autoregressive neural model based on BERT architecture, where the initial transcript and ten candidates are combined into one input. The experiments on Spoken Wikipedia show 21.4% word error rate improvement compared to a baseline ASR system.
Abstract:Grapheme-to-phoneme (G2P) transduction is part of the standard text-to-speech (TTS) pipeline. However, G2P conversion is difficult for languages that contain heteronyms -- words that have one spelling but can be pronounced in multiple ways. G2P datasets with annotated heteronyms are limited in size and expensive to create, as human labeling remains the primary method for heteronym disambiguation. We propose a RAD-TTS Aligner-based pipeline to automatically disambiguate heteronyms in datasets that contain both audio with text transcripts. The best pronunciation can be chosen by generating all possible candidates for each heteronym and scoring them with an Aligner model. The resulting labels can be used to create training datasets for use in both multi-stage and end-to-end G2P systems.
Abstract:Inverse text normalization (ITN) is an essential post-processing step in automatic speech recognition (ASR). It converts numbers, dates, abbreviations, and other semiotic classes from the spoken form generated by ASR to their written forms. One can consider ITN as a Machine Translation task and use neural sequence-to-sequence models to solve it. Unfortunately, such neural models are prone to hallucinations that could lead to unacceptable errors. To mitigate this issue, we propose a single-pass token classifier model that regards ITN as a tagging task. The model assigns a replacement fragment to every input token or marks it for deletion or copying without changes. We present a dataset preparation method based on the granular alignment of ITN examples. The proposed model is less prone to hallucination errors. The model is trained on the Google Text Normalization dataset and achieves state-of-the-art sentence accuracy on both English and Russian test sets. One-to-one correspondence between tags and input words improves the interpretability of the model's predictions, simplifies debugging, and allows for post-processing corrections. The model is simpler than sequence-to-sequence models and easier to optimize in production settings. The model and the code to prepare the dataset is published as part of NeMo project.
Abstract:Text normalization (TN) systems in production are largely rule-based using weighted finite-state transducers (WFST). However, WFST-based systems struggle with ambiguous input when the normalized form is context-dependent. On the other hand, neural text normalization systems can take context into account but they suffer from unrecoverable errors and require labeled normalization datasets, which are hard to collect. We propose a new hybrid approach that combines the benefits of rule-based and neural systems. First, a non-deterministic WFST outputs all normalization candidates, and then a neural language model picks the best one -- similar to shallow fusion for automatic speech recognition. While the WFST prevents unrecoverable errors, the language model resolves contextual ambiguity. The approach is easy to extend and we show it is effective. It achieves comparable or better results than existing state-of-the-art TN models.